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Abstract. Abstract goes here We give a few existence results of a
weak-renormalized solution for a class of nonlinear Boussinesq systems:

∂u

∂t
+ (u · ∇)u− 2 div (µ(θ)Du) +∇p = F (θ) in Ω× (0, T ),

∂b(θ)

∂t
+ u · ∇b(θ)−∆θ = 2µ(θ)|Du|2 in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

where u is the velocity field of the fluid, p is the pressure and θ is the
temperature. The function µ(θ) is the viscosity of the fluid and the
function F (θ) is the buoyancy force which satisfies a growth assumption
in dimension 2 and is bounded in dimension 3. Usual techniques for
Navier-Stokes equations are mixed with the tools involved for renormal-
ized solutions.

1. Introduction

In this paper, we deal with existence of a weak-renormalized solution for
a class of nonlinear Boussinesq systems of the type:

∂u

∂t
+ (u · ∇)u− 2 div (µ(θ)Du) +∇p = F (θ) in Q, (1.1)

∂b(θ)
∂t

+ u · ∇b(θ)−∆θ = 2µ(θ)|Du|2 in Q, (1.2)

div u = 0 in Q, (1.3)
u = 0 and θ = 0 on ΣT , (1.4)
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cedex 05

1



2 Abdelatif Attaoui, Dominique Blanchard, and Olivier Guibé

u(t = 0) = u0 and b(θ)(t = 0) = b(θ0) in Ω, (1.5)

where Ω is an open, Lipschitz and bounded subset of RN (N = 2 or N = 3),
with boundary ∂Ω, T > 0, Q = Ω×(0, T ), ΣT = ∂Ω×(0, T ). The unknowns
are the displacement field u : Ω × (0, T ) −→ RN and the temperature field
θ : Ω × (0, T ) −→ R. The field Du = 1

2(∇u + (∇u)t) is the so-called
rate-deformation tensor field. Equation (1.1) is the conservation equation of
momentum. In this equation, the quantities µ and p respectively denote the
kinematic viscosity and the pressure of the fluid so that the stress tensor in
the incompressible fluid is given by the usual relation σ = −pId + 2µ(θ)Du.
The right hand side of equation (1.1) is the function F (θ), where F is a
force of gravity proportional to variations of density which depend on the
temperature. The function µ is assumed to be continuous and bounded on
R. The function F is continuous from R into RN , u0 belongs to (L2(Ω))N ,
with null divergence and u0 · n = 0 on ∂Ω. Equation (1.2) is the energy
conservation equation, in which the right hand side µ(θ)|Du|2 is the dissipa-
tion energy. For this equation, the real valued function b is assumed to be a
strictly increasing C1-function defined on R, b(0) = 0 and b′(r) ≥ α′ ∀r ∈ R,
for a constant α′ > 0, the initial data b(θ0) belongs to L1(Ω). The Boussi-
nesq system (1.1)–(1.5) of hydrodynamics equations (see [6]), arises from
the coupling between a Navier-Stokes equation for the velocity and the pres-
sure and an additional transport-diffusion equation for the temperature [19].
Systems which couple the Navier-Stokes equation with temperature diffusion
are in particular studied in [12, 15, 16, 20, 21]. Nonlinear systems similar to
(1.1)–(1.5) but with a constant right hand side (compared to θ) and b(θ) = θ
have been in particular investigated in [7], [8] and [18]. In the particular case
where the dissipation energy is neglected, existence and uniqueness result of
a weak solution for system (1.1)–(1.5) (i.e. in the distribution meaning) has
been established in [11]. Density gradients in a fluid are induced, for exam-
ple, by temperature variations resulting from the non-uniform heating of the
fluid. One will find, for example, a presentation of assumptions, which make
it possible to justify the Boussinesq model in [1]. Let us emphasize that in
simpler models the function F is assumed to be linear (or even bounded)
because of the linearization of the dependence of the density gradients with
respect to the temperature. The model studied in this paper is more general
than those which are described e.g in [1, 7, 8, 11, 18]. Indeed:
- the viscosity coefficient and the external forcing term are temperature-
dependent (with nonlinear dependence).
- the internal energy is also assumed to be nonlinear with respect to the
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temperature and this affects the time derivative term in the temperature
equation.
- there is a right hand side in the energy conservation equation which is
quadratic in the spatial gradient of the velocity field.
Existence of solutions of (1.1)–(1.5) is based on stability of equations (1.1)
and (1.2) if approximation arguments are used, or on the uniqueness of so-
lutions of these equations if one uses fixed-point arguments. We are thus
constrained to distinguish the case of dimension 2 of space (N = 2) from
dimension 3 (N = 3).

In the case of dimension 2, it is known that if F (θ) ∈ L2(0, T ; (H−1(Ω))2),
then the Navier-Stokes equation (1.1) has a unique solution for u0 ∈ (L2(Ω))2

and the dissipation energy µ(θ)|Du|2 is stable in L1(Q) with respect to ap-
proximations. The energy conservation equation (1.2) is thus placed natu-
rally within the L1 framework. There are many works on parabolic equations
with L1 data (see e.g [3, 4, 9, 22]). To guarantee the uniqueness and the
stability of the solution of (1.2), we use the framework of renormalized so-
lutions which have these properties contrary to the weak solutions. This
notion has been introduced by R.-J. DiPerna and P.-L. Lions in [13] and [14]
for the study of Boltzmann equations (see also P-L. Lions [18] for applica-
tions to fluid mechanics models). This notion was then adapted to parabolic
version for equations of type (1.2) with L1 data (see e.g [2, 5]). The type
of solutions which one obtains depends on the behavior of the function F .
If, for example, F is bounded, one obtains solutions for all given initial data
u0 ∈ (L2(Ω))2 and b(θ0) ∈ L1(Ω). To study the case of more general func-
tions F , it is necessary to investigate the regularity of the solutions of (1.2).
Under the assumptions that we adopt on b, the renormalized solutions of
equation (1.2) satisfy the following regularities:

θ ∈ L∞(0, T ;L1(Ω)),

∀ k > 0,
∫ T

0

∫
Ω
|DTk(θ)|2 dx dt ≤ C k,

with Tk(r) =min(k, max(r,−k)) ∀ r ∈ R. We show then in a first step
that θ ∈ Lr(0, T ;Lq(Ω)) with 1 < q < ∞ and r < q

q−1 (a similar result
is shown in [23] for N > 2 but it cannot be used as such for N = 2). To
have F (θ) ∈ L2(0, T ; (H−1(Ω))2), we are constrained to make the following
growth assumption on F :

∀r ∈ R, |F (r)| ≤ a+M |r|α,
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with a ≥ 0, M ≥ 0 and 2α ∈ [0, 3[. We then show in a second step that F (θ)
is identified with an element of L2(0, T ; (H−1(Ω))2) with

‖F (θ)‖L2(0,T ;(H−1(Ω))2) ≤ C(a+ ‖θ‖αLr(0,T ;Lq(Ω))).

These arguments allow us, thanks to approximations of b and fixed-point
methods, to show that (1.1)–(1.5) has solutions for small initial data.

In the case of dimension N = 3, the uniqueness of solution of the Navier-
Stokes equation (1.1) and the stability of dissipation energy are open prob-
lems if u0 belongs only to (L2(Ω))3. If, for example, u0 ∈ (H1

0 (Ω))3, and F
is bounded such that ‖u0‖(H1

0 (Ω))3 + ‖F‖(L∞(R))3 ≤ η, where η is a constant
small enough, we can then obtain the existence of a solution of (1.1)–(1.5)
with the same techniques that in the case N = 2.

The paper is organized as follows: Section 2 is devoted to introduce the
usual Navier-Stokes functional setting (according to the variational formula-
tion introduced by Leray [17] within framework of free divergence functional
spaces), to specify the assumptions on b, F, µ, u0, θ0 and b(θ0) needed in the
present study and to the definition of a weak-renormalized solution of (1.1)–
(1.5). In Section 3, we describe the method used to prove existence of a
solution through a fixed-point argument with respect to the unknown θ. In
Section 4, we investigate the existence, uniqueness and stability of the solu-
tion of the parabolic problem (3.5)–(3.7) resulting from (1.1)–(1.5). We as-
sume in this section that u is given in L2(0, T ; (H1

0 (Ω))2)∩L∞(0, T ; (L2(Ω))2)
with div u = 0 and we will mainly used the results of [5]. In Section 5, we
deal with the existence of a solution of (1.1)–(1.5) for N = 2. We distinguish
four cases according to the values of α. For α = 0 (F is bounded), we intro-
duce an approximate problem of the system (1.1)–(1.5) by regularizing the
function b. We prove that this problem admits a weak-renormalized solution
for all initial data by using the Schauder’s fixed-point theorem. The exis-
tence of a weak-renormalized solution of the coupled system is then obtained
by passing to the limit in this approximate problem. For 0 < 2α ≤ 1, we
introduce an approximate problem of the system (1.1)–(1.5) by regularizing
of the function F by F ε (F ε being continuous and bounded). Then, we can
use the result of the first case (α = 0) to deduce that there exists a weak-
renormalized solution of this approximate problem for all initial data and
we will pass to the limit in this problem to obtain the existence of a solution
of (1.1)–(1.5). For the last cases where 1 < 2α < 2 and 2 ≤ 2α < 3, we
introduce an approximate problem of the system (1.1)–(1.5) by regularizing
of the function b. For small initial data, the Schauder’s fixed-point theorem
ensures the existence of a weak-renormalized solution of this problem and



Weak-renormalized solution 5

we pass to the limit as in the preceeding sections. In Section 6, we deal with
dimension N = 3. In the particular case, where F is bounded in L∞ and
u0 ∈ (H1

0 (Ω))3, we prove the existence of a weak-renormalized solution of
the coupled system for small data F and u0.

2. Assumptions and definition of a weak-renormalized
solution

Throughout the paper, we assume that the following assumptions hold
true: Ω is an open, Lipschitz and bounded subset of RN (N = 2 or N = 3)
with boundary ∂Ω, T > 0 is given and we set Q = Ω × (0, T ) and ΣT =
∂Ω× (0, T ).
We introduce the usual Navier-Stokes functional setting:

C∞σ (Ω) = {u ∈ C∞0 (Ω; RN ); div u = 0},
Lpσ(Ω) = closure of C∞σ (Ω) in Lp(Ω; RN ),

H1
σ(Ω) = closure of C∞σ (Ω) in H1

0 (Ω; RN ),
Lpσ(Q) = Lp(0, T ;Lpσ(Ω)),

when p ≥ 1. We assume that the following assumptions hold true:

b is a strictly increasing C1-function defined on R such that b(0) = 0,
(2.1)

b′(r) ≥ α′ ∀r ∈ R for a constant α′ > 0, (2.2)
µ is continuous on R, such that m0 ≤ µ(s) ≤ m1,∀s ∈ R (2.3)

with 0 < m0 ≤ m1,

F is continuous and satisfies the growth assumption: (2.4)
∀r ∈ R |F (r)| ≤ a+M |r|α with a ≥ 0,M ≥ 0 and 0 ≤ 2α < 3,

u0 ∈ (L2(Ω))N , div u0 = 0 and u0 · n = 0 on ∂Ω, (2.5)

θ0 is a measurable function defined on Ω such that b(θ0) ∈ L1(Ω). (2.6)
In dimension N = 3 (Section 6), we adopt stronger assumptions than (2.4)
and (2.5) i.e. F is bounded in L∞ (α = 0) and u0 ∈ (H1

0 (Ω))3.
As usual, the pressure p is eliminated from the system (1.1)–(1.5). The

De Rham’s lemma [10] allows to recover this unknown. In the sequel we
study the following system:

∂u

∂t
+ (u · ∇)u− 2 div (µ(θ)Du) = F (θ) in (H1

σ)′(Ω), (2.7)

for almost every t ∈ (0, T ),
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∂b(θ)
∂t

+ u · ∇b(θ)−∆θ = 2µ(θ)|Du|2 in Q, (2.8)

div u = 0 in Q, (2.9)
u = 0 and θ = 0 on ΣT , (2.10)

u(t = 0) = u0 and b(θ)(t = 0) = b(θ0) in Ω. (2.11)

For any measurable function θ defined on Q, we consider the bilinear and
trilinear forms usually used in the weak formulation of the Navier-Stokes
equations:

aθ(u, v) =
1
2

N∑
i,j=1

∫
Ω
µ(θ)(

∂ui
∂xj

+
∂uj
∂xi

)
∂vj
∂xi

dx,

d(u, v, w) =
N∑

i,j=1

∫
Ω
uj
∂vi
∂xj

wj dx =
∫

Ω
(u · ∇)v · w dx,

∀u, v ∈ H1
σ(Ω),∀w ∈ H1

σ(Ω) ∩ LNσ (Ω).
We recall that aθ is continuous and coercive in H1

σ(Ω) × H1
σ(Ω) for a.e.

t ∈ [0, T ] and that d is anti-symmetric and continuous in H1
σ(Ω)×H1

σ(Ω)×
(H1

σ(Ω) ∩ LNσ (Ω)).

Definition 2.1. A couple of functions (θ, u) defined on Ω× (0, T ) is called
a weak-renormalized solution of problem (2.7)–(2.11) if u and θ satisfy:

u ∈ L2(0, T ;H1
σ(Ω)) ∩ L∞(0, T ;L2

σ(Ω)), (2.12)

TK(θ) ∈ L2(0, T ;H1
0 (Ω)) for any K ≥ 0 and b(θ) ∈ L∞(0, T ;L1(Ω)),

(2.13)∫
{(x,t)∈Q;n≤|b(θ)(x,t)|≤n+1}

b′(θ)|Dθ|2 dx dt −→ 0 as n→ +∞, (2.14)

〈ut, w〉L2
σ(Ω) + aθ(u,w) + d(u, u, w) = 〈F (θ), w〉 ∀w ∈ H1

σ(Ω) ∩ LNσ (Ω),
(2.15)

u(t = 0) = u0 a.e in Ω, (2.16)

∀S ∈ C∞(R) such that S′ has a compact support, we have

∂S(b(θ))
∂t

+ div(uS(b(θ)))− div(S′(b(θ))Dθ)

+ S′′(b(θ))b′(θ)|Dθ|2 = 2µ(θ)|Du|2S′(b(θ)) in D′(Q), (2.17)

S(b(θ))(t = 0) = S(b(θ0)) in Ω. (2.18)
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3. The fixed-point argument

In this section, we describe the (standard) method used to prove existence
of a solution through a fixed-point argument with respect to the unknown
θ. Let us notice that it requires an additional assumption on the function b
(at least if one uses standard methods developed e.g in [5], see section 4).

Let L be a Lebesgue’s space of the type L = Lr(0, T ;Lq(Ω)) (r, q ≥ 1).
For a fixed θ ∈ L, let us consider the Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u− 2 div (µ(θ)Du) = F (θ) in (H1

σ)′(Ω), (3.1)

for almost every t ∈ (0, T ),
div u = 0 in Q, (3.2)
u = 0 on ΣT , (3.3)

u(t = 0) = u0 in Ω. (3.4)

Suppose that (3.1)–(3.4) admit a unique solution u ∈ L2(0, T ;H1
σ(Ω)) so that

µ(θ)|Du|2 ∈ L1(Q). Indeed, this is the case if F (θ) ∈ L2(0, T ; (H−1(Ω))N ).
Then, we consider the parabolic problem:

∂b(θ̂)
∂t

+ u · ∇b(θ̂)−∆θ̂ = 2µ(θ)|Du|2 in Q, (3.5)

θ̂ = 0 on ΣT , (3.6)

b(θ̂)(t = 0) = b(θ0) in Ω. (3.7)

Assume that the hypotheses on the data insure that (3.5)–(3.7) admit a
unique renormalized solution θ̂. In order to apply a fixed-point argument, it
is first necessary to have θ̂ ∈ L so that we can consider the mapping

ψ : θ −→ θ̂

from L into L.
As a consequence, the value of α must be such that the regularity of the
renormalized solution of (3.5)–(3.7) implies F (θ) ∈ L2(0, T ; (H−1(Ω))N ).
This leads to different choices of L depending of the range of α. Secondly,
we use the stability of renormalized solution with respect to the data and the
stability of the quantity µ(θ)|Du|2 (with respect to approximation processes)
to show that ψ is continuous and compact. At last, in order to show that
there exists a ball B of L such that ψ(B) ⊂ B, we distinguish two cases:
if 0 ≤ 2α ≤ 1, this is proved for any data satisfying (2.5)–(2.6), while if
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1 < 2α < 3, we are led to assume that a, ‖b(θ0)‖L1(Ω) and ‖u0‖(L2(Ω))N are
small enough.

4. The parabolic problem

In this section, we investigate the existence, uniqueness and stability of
the solution of (3.5)–(3.7). There are now a large number of papers on the
properties of renormalized (or entropy) solutions for this type of problems
([3], [4], [5], [9], [18], [22], [23]) and we will mainly used the results of [5]. We
assume in this section that u is given in L2(0, T ;H1

σ(Ω)) ∩ L∞(0, T ;L2
σ(Ω))

with div u = 0. Moreover the function θ is given in a Lebesgue space L so
that assumption (2.4) implies that f = µ(θ)|Du|2 ∈ L1(Q). We prove the
following two lemmas (most of the results being standard).

Lemma 4.1. Under the assumptions (2.1), (2.2), (2.3) and (2.6), the prob-
lem (3.5)–(3.7) admits at least a renormalized solution. If b′ is locally
Lipschitz-continuous, the solution of (3.5)–(3.7) is unique. Let bε be a se-
quence of C2-approximations of b such that b′ε(r) > 0,∀r ∈ R, bε(0) = 0,
and such that bε and b′ε converge to b and b′ uniformly on R as ε tends to 0.
Let f ε be a sequence of L1(Q). Let us denote by θ̂ε the unique renormalized
solution of (3.5)–(3.7) with bε and f ε in place of b and 2µ(θ)|Du|2. Then :
· if f ε is bounded in L1(Q), then there exists a subsequence of θ̂ε such that

θ̂ε −→ v a.e. in Q, (4.1)

TK(θ̂ε) ⇀ TK(v) weakly in L2(0, T ;H1
0 (Ω)), (4.2)

as ε tends to 0, for any K > 0 , where v is a measurable function defined on
Q.
· if f ε strongly converges to 2µ(θ)|Du|2 in L1(Q), then there exists a subse-
quence of θ̂ε such that

θ̂ε −→ θ̂ a.e. in Q, (4.3)

TK(θ̂ε)→ TK(θ̂) strongly in L2(0, T ;H1
0 (Ω)), (4.4)

as ε tends to 0, for any K > 0, and θ̂ is a renormalized solution of (3.5)–
(3.7).

The following lemma gives a regularity result of renormalized solution of
(3.5)–(3.7) for dimension N ≥ 1.

Lemma 4.2. Under the assumptions (2.1), (2.2), (2.3) and (2.6), any
renormalized solution θ̂ of (3.5)–(3.7) satisfies the following estimates:
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- for N ≥ 1 and all p ∈ [1, N+2
N [, there exists a constant C (depending only

on p, N , Ω, and T ) such that:

‖θ̂‖Lp(Q) ≤ C (‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω)).

- for N = 2, for all q, r such that 1 < q < ∞, and 1 ≤ r < q
q−1 , we have

θ̂ ∈ Lr(0, T ;Lq(Ω)), and there exists a constant C (depending on T, r, q,Ω)
such that

‖θ̂‖Lr(0,T ;Lq(Ω)) ≤ C (‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω)).

Proof of Lemma 4.1. The proof is almost identical of the one given in, e.g [5]
where the result is established for u ≡ 0 and we just sketch the arguments
involving the term u · Db(θ̂). Loosely speaking, this term does not affect
the estimates on b(θ̂) and θ̂ since its contribution against test functions
of the type φ(θ̂) is equal to zero because div u = 0 and of the boundary
conditions (2.10). Indeed, the proof of Lemma 4.1 is performed through
approximation and passage to the limit. The functions µ(θ)|Du|2 and θ0

are approximated by smooth functions. The function b is suppose to be
Lipschitz on R and, as in [11], the function u is approximated in L2(Q) by
a sequence uj ∈ L∞(Q)∩L2

σ(Q) (then div uj = 0 in Q). The corresponding
problem indeed admits a weak solution θj ∈ L2(0, T ;H1

0 (Ω)) with b(θj) ∈
L∞(0, T ;L2(Ω)). To pass to the limit in the term uj · Db(θj) with respect
to j is easy because (by standard argument) b(θj) ⇀ b(θ) weakly in L2(Q)
(recall that b is also supposed to be Lipschitz-continuous on R), and uj −→ u
strongly in L2(Q). It follows that the approximate problem with respect of
b, θ0 and µ(θ)|Du|2 admits at least a weak solution θ̂ε ∈ L2(0, T ;H1

0 (Ω))
with b(θ̂ε) ∈ L2(0, T ;H1

0 (Ω)). As mentioned above, we can repeat exactly
the same procedure as in [5] to show that (for a subsequence):

θ̂ε −→ θ̂ a.e. in Q, (4.5)

TK(θ̂ε)→ TK(θ̂) strongly in L2(0, T ;H1
0 (Ω)), (4.6)

as ε tends to zero, for any K > 0, because the convection term u · Db(θ)
never contributes in all the derivations of [5] (see Lemma 1 and Theorem 1
of that paper). As a consequence, all we have to show here is firstly that the
“renormalized term” u ·DS(b(θ̂ε)) passes to the limit as ε tends to 0 for any
function S ∈ C∞(R) such that S′ has a compact support and secondly that
the initial condition S(b(θ̂))(t = 0) = S(b(θ0)) holds true. Indeed, we have
u ·DS(b(θ̂ε)) = u · S′(b(Tk(θ̂ε)))b′(Tk(θ̂ε))DTk(θ̂ε) for some k since S′ has a
compact support and b′(r) ≥ α′ ∀r ∈ R (see (2.2)). Due to (4.5) and (4.6),
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the sequence u ·DS(b(θ̂ε)) strongly converges in L1(Q) to u ·DS(b(θ̂)). To
recover the initial condition (3.7), we proceed again as in [5] upon remarking
that the term u ·DS(b(θ̂ε)) is compact in L1(Q).

The stability and uniqueness results can be proved exactly as in [5]. �

Proof of Lemma 4.2. Any renormalized solution θ̂ of (3.5)–(3.7) satisfies the
usual estimates (see e.g. [2] and [5]))∫

Q
|DTK(θ̂)|2dxdt ≤ K(‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω)), (4.7)

and
‖b(θ̂)‖L∞(0,T ;L1(Ω)) ≤ ‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω). (4.8)

Estimate (4.7) and Lemma 1 of [2] gives that for any p ∈ [1, N+2
N [, there

exists a constant C (depending only on p, N , Ω, and T ) such that:

‖θ̂‖Lp(Q) ≤ C (‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω))
N
N+2 ‖θ̂‖

2
N+2

L∞(0,T ;L1(Ω))
. (4.9)

Now, assumption (2.2) and estimate (4.8) give:

‖θ̂‖L∞(0,T ;L1(Ω)) ≤
1
α

(‖µ(θ)|Du|2‖L1(Q) + ‖b(θ0)‖L1(Ω)), (4.10)

The first part of the Lemma 4.2 follows directly from (4.9) and (4.10).
Now, we turn to the proof of the second part of Lemma 4.2. A similar

result was shown in [23] in the case where N > 2.
Since θ̂ is a renormalized solution of (3.5)–(3.7) and in view of (4.7) and
(4.10), we have:

‖θ̂‖L∞(0,T ;L1(Ω)) ≤M, (4.11)

∀K > 0 ,
∫
Q
|DTK(θ̂)|2 dx dt ≤ KM. (4.12)

Our goal is to show that there exists a constant C independent on M such
that:

‖θ̂‖Lr(0,T ;Lq(Ω)) ≤ CM.

By Gagliardo-Nirenberg’s inequality and (4.11), we have:∫
Ω
|TK(θ̂)|3 dx ≤ C

∫
Ω
|TK(θ̂)| dx

∫
Ω
|DTK(θ̂)|2 dx,

≤ CM
∫

Ω
|DTK(θ̂)|2 dx,
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for almost any t in (0, T ), where C is a constant depending on Ω.
This gives on the one hand:

meas{(x, t) : |θ̂| > K} ≤ C M

K3

∫
Ω
|DTK(θ̂)|2 dx, (4.13)

for almost any t in (0, T ).
On the other hand, estimate (4.11) leads to:

meas{x ∈ Ω : |θ̂| > K} ≤ M

K
, (4.14)

for almost any t in (0, T ).
Now for any 0 ≤ σ ≤ 1 we have for almost any t in (0, T )

meas{x ∈ Ω : |θ̂(x, t)|q > s} =(
meas{x ∈ Ω : |θ̂(x, t)| > s

1
q }
)σ (

meas{x ∈ Ω : |θ̂(x, t)| > s
1
q }
)1−σ

.

In view of (4.13) and (4.14), we obtain:

meas{x ∈ Ω : |θ̂(x, t)|q > s} ≤ CMσ

(∫
Ω |DTs 1

q
(θ̂)|2 dx

s
3
q

)σ M1−σ

s
1−σ
q

,

from which we deduce that:

meas{x ∈ Ω : |θ̂(x, t)|q > s} ≤ CM
(∫

Ω
|DT

s
1
q
(θ̂)|2 dx

)σ 1

s
1+2σ
q

, (4.15)

for almost t in (0, T ).
In the sequel, the proof of the lemma will be divided into three steps.
Step 1: q = r. For any real number 1 < q, we write:∫ T

0

(∫
Ω
|θ̂|q dx

)
dt =

∫ T

0

(∫ ∞
0

meas{x ∈ Ω : |θ̂|q > s} ds
)
dt,

so that for any real number β > 0∫ T

0

∫
Ω
|θ̂|qdx dt ≤

∫ T

0

∫ β

0
meas{x ∈ Ω : |θ̂|q > s} ds dt

+
∫ T

0

∫ ∞
β

meas{x ∈ Ω : |θ̂|q > s} ds dt.

Due to (4.15), we obtain:∫ T

0

∫
Ω
|θ̂|qdx dt ≤ βT |Ω|+ CM

∫ T

0

∫ ∞
β

∫
Ω
|DT

s
1
q
(θ̂)|2 dx 1

s
3
q

ds dt.
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Fubini’s theorem and (4.12) then give∫ T

0

∫
Ω
|θ̂|qdx dt ≤ βT |Ω|+ CM

∫ ∞
β

∫ T

0

∫
Ω
|DT

s
1
q
(θ̂)|2 dx 1

s
3
q

dt ds,

≤ βT |Ω|+ CM2

∫ ∞
β

1

s
2
q

ds.

Since q < 2 because q = r < q
q−1 , then:∫ T

0

∫
Ω
|θ̂|qdx dt ≤ βT |Ω|+ CM2 β

1− 2
q

2
q − 1

.

Choosing β = M q in the above inequality finally gives:∫ T

0

∫
Ω
|θ̂|qdx dt ≤M q(T |Ω|+ Cq

2− q
),

which establishes the second part of Lemma 4.2 in the case where r = q.
Step 2: q < r. For all real numbers 1 < q and r > q, we write:

∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt =
∫ T

0

(∫ ∞
0

meas{x ∈ Ω : |θ̂|q > s} ds
) r
q

dt,

so that for any positive real number β, we have:∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤
∫ T

0

(∫ β

0
meas{x ∈ Ω : |θ̂|q > s} ds

) r
q

dt

+
∫ T

0

(∫ ∞
β

meas{x ∈ Ω : |θ̂|q > s} ds
) r
q

dt.

Using (4.15) with σ = q
r in the above inequality gives∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ β
r
q |Ω|

r
q T

+ C

∫ T

0

(∫ ∞
β

M

(∫
Ω |DTs 1

q
(θ̂)|2 dx

) q
r

s
1
q

+ 2
r

ds

) r
q

dt.

Writing for a real number γ > 1(∫
Ω
|DT

s
1
q
(θ̂)|2 dx

) q
r

=

(∫
Ω |DTs 1

q
(θ̂)|2 dx

s
1
q

+γ

) q
r

s
1
r

+ γq
r ,
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for almost t in (0, T ) and using Hölder’s inequality lead to∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ β
r
q |Ω|

r
q T

+CM
r
q

[∫ ∞
β

ds

s
[ 1
q

+ 1
r

(1−qγ)] r
r−q

] r−q
q ∫ T

0

[∫ ∞
β

∫
Ω |DTs 1

q
(θ̂)|2 dx

s
1
q

+γ

]
ds dt.

Notice that in order to have

[ ∫∞
β

ds

s
[ 1q+1

r (1−qγ)] r
r−q

] r−q
q

< +∞, we must have

[1
q + 1

r (1 − qγ)] r
r−q > 1. With the help of Fubini’s theorem and (4.12), the

above inequality gives∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ β
r
q |Ω|

r
q T

+ CM
1+ r

q

∫ ∞
β

1
sγ
ds ·

[∫ ∞
β

ds

s
[ 1
q

+ 1
r

(1−qγ)] r
r−q

] r−q
q

.

Since r < q
q−1 (by hypothesis of Lemma 4.2), then 1 + 1

q + r
q2
− r

q > 1 and
there exists a real number γ such that 1 < γ < 1 + 1

q + r
q2
− r

q which in turn
insures that [1

q + 1
r (1− qγ)] r

r−q > 1.
For such a choice of γ it follows that∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ β
r
q |Ω|

r
q T + CM

1+ r
q
β1−γ

γ − 1
· β
[
1−[ 1

q
+ 1
r

(1−qγ)] r
r−q

]
r−q
q

[1
q + 1

r (1− qγ)] r
r−q − 1

.

Choosing now β = M q, we conclude that∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ C(γ, r, q,N)M r,

which proves the second part of Lemma 4.2 in the case where q < r.

Step 3: r < q. If q < 2 then r < 2 and by Hölder’s inequality and the
analysis of the first case, we obtain:∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ C(r, q,Ω, T )M r.
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If q ≥ 2, Hölder’s inequality implies that for 0 < σ < 1(∫
Ω
|θ̂|q dx

) r
q

≤
(∫

Ω
|θ̂| dx

)σ r
q
(∫

Ω
|θ̂|

q−σ
1−σ dx

) (1−σ)r
q

,

for almost t in (0, T ), which gives using (4.11)∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤M
σ r
q

∫ T

0

(∫
Ω
|θ̂|

q−σ
1−σ dx

) 1−σ
q−σ

r(q−σ)
q

dt. (4.16)

In what follows, we show that we can choose 0 < σ < 1 such that∫ T

0

(∫
Ω
|θ̂|

q−σ
1−σ dx

) 1−σ
q−σ

r(q−σ)
q

dt ≤ CM. (4.17)

To this end, recall that N = 2, so that Sobolev’s embedding theorem gives

∫
Ω
|TK(θ̂)|p dx ≤ C(p, |Ω|)

(∫
Ω
|DTK(θ̂)|2 dx

) p
2

, (4.18)

for any p ≥ 2.
Since for p = 2q

(1−σ)r

|TK(θ̂)|
q−σ
1−σ ≤ |TK(θ̂)|p ·K

1
1−σ (q−σ− 2q

r
),

we have(∫
Ω
|TK(θ̂)|

q−σ
1−σ dx

) 1−σ
q−σ

r(q−σ)
q

≤ K
r
q

(q−σ− 2q
r

)
(∫

Ω
|TK(θ̂)|p dx

) 2
p

,

for almost any t in (0, T ).
In view of (4.18), we deduce that:(∫

Ω
|TK(θ̂)|

q−σ
1−σ dx

) 1−σ
q−σ

r(q−σ)
q

≤ cK
r
q

(q−σ− 2q
r

)
∫

Ω
|DTK(θ̂)|2 dx,

for almost t in (0, T ).
With (4.12), it implies that for any K > 0∫ T

0

(∫
Ω
|TK(θ̂)|

q−σ
1−σ dx

) (1−σ)r
q

dt ≤ CK
r
q

(q−σ− 2q
r

)
KM.



Weak-renormalized solution 15

Since r < q
q−1 , we can take σ = q

r (r − 1) and Fatou’s lemma implies that
(4.17) holds true. Inserting (4.17) into (4.16) finally yields∫ T

0

(∫
Ω
|θ̂|q dx

) r
q

dt ≤ C(γ, r, q,N)M r.

This achieves the proof of Lemma 4.2. �

5. Existence of a solution for N=2

This section is devoted to establish the following existence theorem:

Theorem 5.1. Assume that the assumptions (2.1)–(2.6) on the data hold
true. Then:
- if 0 ≤ 2α ≤ 1, there exists at least a weak-renormalized solution of problem
(2.7)–(2.11) (in the sense of Definition 2.1).
- if 1 < 2α < 3, there exists a real positive number η such that if a +
‖u0‖(L2(Ω))2 + ‖b(θ0)‖L1(Ω) ≤ η, there exists at least a weak-renormalized
solution of problem (2.7)–(2.11) (in the sense of Definition 2.1).

Proof of Theorem 5.1. We use the fixed point-argument described in Section
3 and we distinguish four cases according to the values of α.
CASE 1: α = 0.

For a fixed θ ∈ L1(Q), since F is bounded (α = 0), we denote by u the
unique weak solution of (3.1)–(3.4) in L2(0, T ;H1

σ(Ω))∩L∞(0, T ;L2
σ(Ω)) (see

e.g [18] and [26]). As in Section 4, bε is a sequence of C2-approximations of
b such that b′ε is a locally Lipschitz-continuous on R and b′ε converges to b′

uniformly on R as ε tends to 0. As a consequence of (2.2), we have

b′ε(r) ≥
α′

2
∀r ∈ R,

for ε small enough. Then, for a fixed ε > 0 small enough, we denote by
θ̂ε (see Lemma 4.1) the unique renormalized solution of (3.5)–(3.7) with bε
in place of b. The regularity of θ̂ε (see Lemma 4.2) indeed implies that
θ̂ε ∈ L1(Q). As a consequence we can take L = L1(Q) in Section 3.
For a fixed ε > 0 small enough, we define the mapping:

ψε1 : L1(Q) −→ L1(Q)

θ −→ θ̂ε = ψε1(θ).
The mapping ψε1 is well defined. In the sequel, we will show that ψε1 is
compact, continuous and that there exists a ball B of L1(Q) such that
ψε1(B) ⊂ B.
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-i- ψε1 is compact. Let us consider a sequence θn, which is bounded in
L1(Q) and define the sequence θ̂εn by

ψε1(θn) = θ̂εn.

By the definition of ψε1, for a fixed n ≥ 1, the functions un and θ̂εn are the
unique solutions of the two problems:

∂un
∂t

+ (un · ∇)un − 2 div (µ(θn)∇un) = F (θn) in (H1
σ)′(Ω), (5.1)

for almost every t ∈ (0, T ),
div un = 0 in Q, (5.2)
un = 0 on ΣT , (5.3)

un(t = 0) = u0 in Ω. (5.4)

and

∂bε(θ̂εn)
∂t

+ un · ∇bε(θ̂εn)−∆θ̂εn = 2µ(θn)|Dun|2 in Q, (5.5)

θ̂εn = 0 on ΣT , (5.6)

bε(θ̂εn)(t = 0) = bε(θ0) in Ω, (5.7)

(un is the usual weak solution of the Navier-Stokes equations (5.1)–(5.4) and
θ̂εn is the unique renormalized solution of (5.5)–(5.7) given by Lemma 4.1).

Recalling the usual energy equation on the Navier-Stokes equations (5.1)–
(5.4) (which is obtained through using un as a test function in these equa-
tions) gives

1
2

∫
Ω
|un(t)|2 dx+

1
2

∫ T

0

∫
Ω
µ(θn)|Dun|2 dx dt (5.8)

=
∫ T

0

∫
Ω
F (θn) · un dx dt+

1
2

∫
Ω
|u0|2 dx.

Using assumption (2.3), Poincaré’s inequality and Korn’s inequality then
lead to

∫
Ω
|un(t)|2 dx+

∫ T

0

∫
Ω
|∇un|2 dx dt ≤ C

(
‖F (θn)‖2(L2(Q))2 + ‖u0‖2(L2(Ω))2

)
where C is a constant independent of n.
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Due to the bounded character of F (α = 0), indeed the sequence F (θn) is
bounded in (L∞(Q))2. We obtain the usual estimates (see e.g [11], [25] and
[26]):

un is bounded in L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)), (5.9)
∂un
∂t

is bounded in L2(0, T ; (H1
σ (Ω))′). (5.10)

In view of estimates (5.9) and (5.10), we can extract a subsequence (still
indexed by n) such that:

un ⇀ u weakly in L2(0, T ;H1
σ(Ω)), (5.11)

un → u strongly in L2
σ(Q), (5.12)

∂un
∂t

⇀
∂u

∂t
weakly in L2(0, T ; (H1

σ) ′(Ω)),

as n tends to +∞, where u is a function of L∞(0, T ;L2
σ(Ω))∩L2(0, T ;H1

σ(Ω)).
It implies that:

µ(θn)|Dun|2 is bounded in L1(Q). (5.13)
In view of (5.13) and Lemma 4.2, we obtain:

θ̂εn is bounded in Lp(Q) ∀p ∈ [1, 2[. (5.14)

Estimate (5.13) and Lemma 4.1 imply that, for a subsequence still indexed
by n, there exists a measurable function ϑ such that:

θ̂εn −→ ϑ almost everywhere in Q, (5.15)

b(θ̂εn) −→ b(ϑ) almost everywhere in Q,

TK(θ̂εn) ⇀ TK(ϑ) in L2(0, T ;H1
0 (Ω)),

as n tends to +∞ for any K ≥ 0. In view of (5.14) and (5.15), we conclude
that:

θ̂εn belongs to a compact set of Lp(Q),
for every p such that 1 ≤ p < 2, so that ψε1 : L1(Q) −→ L1(Q) is a compact
mapping.

-ii- ψε1 is continuous. Let us consider a sequence θn, which belongs to
L1(Q) such that:

θn → θ, (5.16)

strongly in L1(Q) as n tends to +∞, where θ is a function of L1(Q). Let θ̂εn
and θ̂ε be defined by:

ψε1(θn) = θ̂εn and ψε1(θ) = θ̂ε.
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The sequence un is defined as in Step -i- and the function u is the limit
defined in (5.11)–(5.12). Since, due to (5.16)

F (θn)→ F (θ) in (L2(Q))2, (5.17)

µ(θn)→ µ(θ) a.e. and in L∞(Q) weak-*, (5.18)

as n tends to +∞, we can pass to the limit in (5.1)–(5.4) and u is indeed
the solution of (3.1)–(3.4). Furthermore, it is well known that, since N = 2,
u satisfies the following energy equation

1
2

∫
Ω
|u(t)|2 dx+

1
2

∫ T

0

∫
Ω
µ(θ)|Du|2 dx dt (5.19)

=
∫ T

0

∫
Ω
F (θ) · u dx dt+

1
2

∫
Ω
|u0|2 dx.

Passing to the limit in (5.8) and comparing with (5.19) we obtain (using
(5.18) and the fact that un is compact in (L2(Q))2),

un → u strongly in L2(0, T ;H1
σ(Ω)),

as n tends to +∞. Then

µ(θn)|Dun|2 → µ(θ)|Du|2 strongly in L1(Q), (5.20)

as n tends to +∞. With the help of Lemma 4.1, we conclude that

θ̂εn −→ θ̂ε a.e. in Q, (5.21)

TK(θ̂εn)→ TK(θ̂ε) in L2(0, T ;H1
0 (Ω)),

as n tends to ∞ for a fixed ε > 0 and for any K > 0, where θ̂ε is the unique
renormalized solution of (3.5)–(3.7) (with bε in place of b). In view of (5.14)
and (5.21), we have

θ̂εn → θ̂ε

strongly in Lp(Q), for all p such that 1 ≤ p < 2. As a consequence

θ̂εn → θ̂ε

strongly in L1(Q).
-iii- There exists a ball B of L1(Q) such that ψε1(B) ⊂ B. We show

that there exists a real positive number R such that:

ψε1(L1(Q)) ⊂ BL1(Q)(0, R).
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Let θ be in L1(Q) and u ∈ L2(0, T ;H1
σ(Ω))∩L∞(0, T ;L2

σ(Ω)) be the unique
solution of (3.1)–(3.4). We have as in Step -ii-∫ T

0

∫
Ω
|Du|2 dx dt ≤ C

(
‖F (θ)‖2(L2(Q))2 + ‖u0‖2(L2(Ω))2

)
, (5.22)

where C is a constant independent of θ.
Since F and µ are bounded, there exists a constant C independent of θ

such that
||µ(θ)|Du|2||L1(Q) ≤ C,

and it follows from Lemma 4.2 that there exists a constant C independent
of θ such that

‖θ̂ε‖L1(Q) ≤ C.
For a fixed ε > 0 small enough, Schauder’s fixed-point theorem and the

definition of ψε1, permit to conclude that there exists a weak-renormalized
solution (θε, uε) of the following regularized problem:

∂uε

∂t
+ (uε · ∇)uε − 2 div (µ(θε)Duε) = F (θε) in (H1

σ)′(Ω), (5.23)

for almost every t ∈ (0, T ),
∂bε(θε)
∂t

+ uε · ∇bε(θε)−∆θε = 2µ(θε)|Duε|2 in Q, (5.24)

div uε = 0 in Q, (5.25)
uε = 0 and θε = 0 on ΣT , (5.26)

uε(t = 0) = u0 and bε(θε)(t = 0) = bε(θ0) in Ω. (5.27)

Since the function F is bounded on R, it follows that

uε is bounded in L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)),

∂uε

∂t
is bounded in L2(0, T ; (H1

σ (Ω))′).

Upon extracting a subsequence we have

uε ⇀ u weakly in L2(0, T ;H1
σ(Ω)),

uε → u strongly in L2
σ(Q),

as ε tends to 0, where u is a function of L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)).
It implies that:

µ(θε)|Duε|2 is bounded in L1(Q),
and then (see Lemma 4.1) again for a subsequence still indexed by ε

θε −→ θ almost everywhere in Q,
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bε(θε) −→ b(θ) almost everywhere in Q,

TK(θε) ⇀ TK(θ) in L2(0, T ;H1
0 (Ω)),

as ε tends to 0, where θ is a measurable function defined on Q. It follows
that u is the solution of the Navier-Stokes equations (2.15)–(2.16) and that,
proceeding as in Step -ii-,

µ(θε)|Duε|2 → µ(θ)|Du|2 in L1(Q),

as ε tends to 0. In view of Lemma 4.1, this implies that

TK(θε)→ TK(θ) in L2(0, T ;H1
0 (Ω)),

as ε tends to 0, where θ is a renormalized solution of (3.5)–(3.7). As a
consequence, there exists a weak-renormalized solution (θ, u) of the problem
(2.7)–(2.11)

CASE 2: 0 < 2α ≤ 1.
Let us proceed by approximation and passage to the limit. We replace

the function F by F ε = F ◦ T 1
ε
, for ε > 0, and we consider the following

approximate problem

∂uε

∂t
+ (uε · ∇)uε − 2 div (µ(θε)Duε) = F ε(θε) in (H1

σ(Ω))′, (5.28)

for almost every t ∈ (0, T ),
∂b(θε)
∂t

+ uε · ∇b(θε)−∆θε = 2µ(θε)|Duε|2 in Q, (5.29)

div uε = 0 in Q, (5.30)
uε = 0 and θε = 0 on ΣT , (5.31)

uε(t = 0) = u0 and b(θε)(t = 0) = b(θ0) in Ω. (5.32)

The function F ε being continuous and bounded, we apply the result of Case
1, so that there exists a weak-renormalised solution (θε, uε) of the approxi-
mate system (5.28)–(5.32). Using estimate (4.10) for θε, we have∫

Ω
|θε|(t)dx ≤ 1

α
(‖µ(θε)|Duε|2‖L1(Q) + ‖b(θ0)‖L1(Ω)).

Now, estimate (5.22) for uε gives∫ T

0

∫
Ω
|Duε|2 dx dt ≤ C

(
‖F (θε)‖2(L2(Q))2 + ‖u0‖2(L2(Ω))2

)
,
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where C is a constant independent of ε. Since µ is bounded, using the growth
condition (2.4) on F implies that∫

Ω
|θε|(t)dx ≤ c1

∫ t

0

∫
Ω
|θε|2αdx dt+ c2,

where c1 and c2 are two constants which do not depend on ε.
Since 0 < 2α ≤ 1, Gronwall’s lemma shows that (θε)ε>0 is bounded in
L∞(0, T ;L1(Ω)) and as a consequence (F ε(θε))ε>0 is bounded in (L2(Q))2.
Then

µ(θε)|Duε|2 is bounded in L1(Q).

Proceeding as in Step -i-, we deduce that for a subsequence still indexed by
ε

uε ⇀ u weakly in L2(0, T ;H1
σ(Ω)),

θε −→ θ almost everywhere in Q.

It follows that F ε(θε) converges weakly to F (θ) in (L2(Q))2 and then u is
the solution of (2.15)–(2.16) and we have

µ(θε)|Duε|2 → µ(θ)|Du|2 strongly in L1(Q).

Applying Lemma 4.1, we deduce that

TK(θε)→ TK(θ) in L2(0, T ;H1
0 (Ω)),

as ε tends to 0, where θ is a renormalized solution of (3.5)–(3.7). Thus, (θ, u)
is a weak-renormalized solution of the problem (2.7)–(2.11).

CASE 3: 1 < 2α < 2.
For a fixed θ ∈ L2α(Q), due to the growth assumption (2.4) on F , F (θ) ∈

(L2(Q))2 and again there exists a unique weak solution u of (3.1)–(3.4) in
L2(0, T ;H1

σ(Ω)) ∩ L∞(0, T ;L2
σ(Ω)). As in the case α = 0, for ε > 0 small

enough, there exists a unique renormalized solution θ̂ε of (3.5)–(3.7) with bε
in place of b. The regularity of θ̂ε (see Lemma 4.2) implies that θ̂ε ∈ L2α(Q)
because 1 < 2α < 2. As a consequence, we can take L = L2α(Q) in the
fixed-point argument of Section 3.
For a fixed ε > 0 small enough, we define the mapping:

ψε2 : L2α(Q) −→ L2α(Q)

θ −→ θ̂ε = ψε2(θ)

We show that ψε2 is compact, continuous and that there exists a ball B of
L2α(Q) such that ψε2(B) ⊂ B.
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-i- ψε2 is compact. Let us consider a bounded sequence θn in L2α(Q) and
define the sequence θ̂εn by

ψε2(θn) = θ̂εn.

For a fixed n ≥ 1, by definition of ψε2 the functions un and θ̂εn are respectively
the unique solutions of the two problems (5.1)–(5.4) and (5.5)–(5.7). Due to
the growth condition (2.4) on F , the sequence F (θn) is bounded in (L2(Q))2

and then

un is bounded in L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

σ(Ω)), (5.33)
∂un
∂t

is bounded in L2(0, T ; (H1
σ) ′(Ω)).

This implies that

µ(θn)|Dun|2 is bounded in L1(Q). (5.34)

Proceeding as above with the help of Lemma 4.1 and Lemma 4.2, we deduce
that

θ̂εn is bounded in Lp(Q) ∀p ∈ [1, 2[. (5.35)

θ̂εn −→ ϑ almost everywhere in Q, (5.36)
as n tends to +∞. Since 1 < 2α < 2 from (5.35) and (5.36) we conclude
that

θ̂εn belongs to a compact set of L2α(Q) (5.37)
and ψε2 is compact.

-ii- ψε2 is continuous. Let us consider a sequence θn of L2α(Q) such that

θn → θ,

strongly in L2α(Q) as n tends to +∞, where θ is a function of L2α(Q). Let
θ̂εn and θ̂ε be defined by:

ψε2(θn) = θ̂εn and ψε2(θ) = θ̂ε.

Since
F (θn) ⇀ F (θ) in (L2(Q))2,

as n tends to +∞, the corresponding sequence un given by (5.1)–(5.4) is
compact in (L2(Q))2. We can repeat exactly the same argument that led to
(5.20) to show that:

µ(θn)|Dun|2 → µ(θ)|Du|2 strongly in L1(Q),

as n tends to +∞. By Lemma 4.1, we deduce that

θ̂εn −→ θ̂ε a.e. in Q, (5.38)
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TK(θ̂εn)→ TK(θ̂ε) in L2(0, T ;H1
0 (Ω)),

as n tends to∞ for a fixed ε > 0 and for any K > 0 , where θ̂ε is the unique
renormalized solution of (3.5)–(3.7) (with bε in place of b). Since 1 < 2α < 2,
(5.35) and (5.38) give

θ̂εn → θ̂ε

strongly in L2α(Q).

-iii- There exists a ball B of L2α(Q) such that ψε2(B) ⊂ B. Let R
be a positive real number. We will show that if the data are small enough,
there exists R0 > 0 such that:

ψε2(BL2α(Q)(0, R0)) ⊂ BL2α(Q)(0, R0).

We assume that θ belongs to BL2α(Q)(0, R). In what follows, C denotes a
generic constant which depends on Ω, T , m1 and m0. We recall that u,
which belongs to L2(0, T ;H1

σ(Ω))∩L∞(0, T ;L2
σ(Ω)) is the unique solution of

the problem (3.1)–(3.4), then we use u as a test function in (3.1), we obtain:

1
2

∫
Ω
|u(t)|2 dx+

1
2

∫ T

0

∫
Ω
µ(θ)|Du|2 dx dt

=
∫ T

0

∫
Ω
F (θ) · u dx dt+

1
2

∫
Ω
|u0|2 dx,

then
1
2

∫
Ω
|u(t)|2 dx+

m0

2

∫ T

0

∫
Ω
|Du|2 dx dt

≤
∫ T

0

∫
Ω
F (θ) · u dx dt+

1
2
‖u0‖2(L2(Ω))2 ,

which implies that

m0

∫ T

0

∫
Ω
|Du|2 dx dt ≤ 2

∫ T

0
‖F (θ)‖(L2(Ω))2‖u‖(L2(Ω))2 dt+ ‖u0‖2L2(Ω).

(5.39)
In what follows, C denotes a constant independent upon ε, θ, F and u0.
Inequality (5.39) and Poincaré’s inequality lead to:

m0

∫ T

0

∫
Ω
|Du|2 dx dt ≤ C

∫ T

0
‖F (θ)‖(L2(Ω))2‖∇u‖(L2(Ω))2 dt+ ‖u0‖2(L2(Ω))2 ,

(5.40)
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Young’s inequality, (5.40) and Korn’s inequality permit us to deduce that:∫ T

0

∫
Ω
|Du|2 dx dt ≤ C

(
‖F (θ)‖2(L2(Q))2 + ‖u0‖2(L2(Ω))2

)
. (5.41)

In view of Lemma 4.2 and (5.41), we obtain

‖θ̂ε‖Lp(Q) ≤ C
[
‖F (θ)‖2(L2(Q))2 + ‖u0‖2(L2(Ω))2 + ‖bε(θ0)‖L1(Ω)

]
, (5.42)

for all p such that 1 ≤ p < 2. By the growth assumption on F , we have:

|F (θ)|2 ≤ 2(a2 +M2|θ|2α) a.e. in Q,

and then

‖F (θ)‖2(L2(Q))2 ≤ 2a2 meas(Ω)T + 2M2‖θ‖2αL2α(Q). (5.43)

It follows that from (5.42) and (5.43):

‖θ̂ε‖Lp(Q) ≤ C
[
a2 meas(Ω)T +M2‖θ‖2αL2α(Q)

+C‖u0‖2(L2(Ω))2 + ‖bε(θ0)‖L1(Ω)

]
,

for all p such that 1 ≤ p < 2. Because 1 < 2α < 2, we deduce that:

‖θ̂ε‖L2α(Q) ≤ C
[
a2 +M2‖θ‖2αL2α(Q) + ‖u0‖2(L2(Ω))2 + ‖bε(θ0)‖L1(Ω)

]
.

Since the sequence bε(θ0) converges to b(θ0) in L1(Ω) as ε tends to 0, it
follows that for example

‖θ̂ε‖L2α(Q) ≤ C
[
a2 +M2‖θ‖2αL2α(Q) + ‖u0‖2(L2(Ω))2 + 2‖b(θ0)‖L1(Ω)

]
, (5.44)

for ε small enough.
Now there exists a positive real number η > 0 and a positive real number

R(η) > 0, which do not depend upon ε, such that if

a2 + ‖u0‖2(L2(Ω))2 + ‖b(θ0)‖L1(Ω) ≤ η, (5.45)

then

C

[
a2 +M2R(η)2α + ‖u0‖2(L2(Ω))2 + 2‖b(θ0)‖L1(Ω)

]
≤ R(η).

As a consequence of (5.44) we conclude that if (5.45) holds true then

ψε2(BL2α(Q)(0, R(η))) ⊂ BL2α(Q)(0, R(η)).
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Schauder’s fixed-point theorem and the definition of ψε2 imply that under the
condition (5.45) and for ε small enough, there exists a weak-renormalized
solution (θε, uε) of the following problem:

∂uε

∂t
+ (uε · ∇)uε − 2 div (µ(θε)Duε) = F (θε) in (H1

σ)′(Ω), (5.46)

for almost every t ∈ (0, T ),
∂bε(θε)
∂t

+ uε · ∇bε(θε)−∆θε = 2µ(θε)|Duε|2 in Q, (5.47)

div uε = 0 in Q, (5.48)
uε = 0 and θε = 0 on ΣT , (5.49)

uε(t = 0) = u0 and bε(θε)(t = 0) = bε(θ0) in Ω, (5.50)

such that:
‖θε‖L2α(Q) ≤ R(η).

We now pass to the limit with respect to ε in (5.46)–(5.50). Due to (2.4)
and from the above estimate the sequence F (θε) is bounded in (L2(Q))2

and we end the proof as in the case 0 < 2α ≤ 1. As a consequence, under
the condition (5.45), there exists a weak-renormalized solution (θ, u) of the
problem (2.7)–(2.11).

CASE 4: 2 ≤ 2α < 3.
Under this assumption on α, the fonction F (θ) can not be expected in

(L2(Q))2 and we will use the uncoupled regularity of θ with respect to t and
x given by Lemma 4.2. Let q > α be a real number. For θ ∈ L2α(0, T ;Lq(Ω))
the growth assumption (2.4) implies that F (θ) belongs to L2(0, T ; (Lp(Ω))2)
for any real number 1 < p < q

α . Since N = 2, Sobolev’s embedding then
gives that

F (θ) ∈ L2(0, T ; (H−1(Ω))2) (5.51)

with
‖F (θ)‖L2(0,T ;(H−1(Ω))2) ≤ C(a+ ‖θ‖αLr(0,T ;Lq(Ω))). (5.52)

As a consequence of (5.51), for any θ ∈ L2α(0, T ;Lq(Ω)), the problem (3.1)–
(3.4) admits a unique solution u in L2(0, T ;H1

σ(Ω))∩L∞(0, T ;L2
σ(Ω)). Then,

by Lemma 4.1, the parabolic problem (3.5)–(3.7) with b replaced by bε admits
a unique renormalized solution θ̂ε which satisfies the regularity of Lemma
4.2. As a consequence, in order to insure that θ̂ε belongs to the same space
L2α(0, T ;Lq(Ω)) than θ, it is sufficient to choose α < q < 2α

2α−1 which is
possible since 2α < 3. This leads to the choice L = Lr(0, T ;Lq(Ω)) in the
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process described in Section 3 and to consider the mapping ψε3 for a fixed ε
(small enough) defined by

ψε3 : Lr(0, T ;Lq(Ω)) −→ Lr(0, T ;Lq(Ω))

θ −→ θ̂ε = ψε3(θ).
In the sequel, we will show that ψε3 is compact, continuous and that there

exists a ball B of Lr(0, T ;Lq(Ω)) such that ψε3(B) ⊂ B.
-i-ψε3 is compact. Let us consider a sequence θn which is bounded in

Lr(0, T ;Lq(Ω)) and define the sequence θ̂εn by

ψε3(θn) = θ̂εn.

For a fixed n ≥ 1, the functions un and θ̂εn are respectively the unique
solutions of the two problems (5.1)–(5.4) and (5.5)–(5.7).

Since the sequence θn is bounded in Lr(0, T ;Lq(Ω)), for any real number
1 < p < q

α the sequence F (θn) is bounded in L2(0, T ; (Lp(Ω))2) and then in
L2(0, T ; (H−1(Ω))2) so that the sequence un satisfies the estimates (5.33)–
(5.34) of the step -i- of Case 3. Using Lemmas 4.1 and 4.2 permits to obtain

θ̂εn −→ ϑ almost everywhere in Q, (5.53)

θ̂εn is bounded in Lr1(0, T ;Lq1(Ω)), (5.54)
for any couple (q1, r1) such that 1 < q1 < ∞ and 1 ≤ r1 <

q1
q1−1 and where

ϑ is a measurable function defined on Q. Since we are at liberty to choose
q < q1 and 2α < r1 <

q1
q1−1 , we deduce that from (5.53) and (5.54)

θ̂εn → ϑ strongly in Lr(0, T ;Lq(Ω)),
as n tends to +∞ and ψε3 is a compact mapping.

-ii-ψε3 is continuous. Let us consider a sequence θn of Lr(0, T ;Lq(Ω))
such that:

θn → θ strongly in Lr(0, T ;Lq(Ω)),

as n tends to +∞, where θ is a function of Lr(0, T ;Lq(Ω)). Let θ̂εn and θ̂ε

be defined by:
ψε3(θn) = θ̂εn and ψε3(θ) = θ̂ε.

Due to the choice of q, the assumption (2.4) implies that the sequence
F (θn) is compact in L2(0, T ; (Lp(Ω))2) for any real number 1 < p < q

α .
Since the embedding L2(0, T ;Lp(Ω)) ⊂ L2(0, T ;H−1(Ω)) is continuous it
follows that

F (θn)→ F (θ) in L2(0, T ; (H−1(Ω))2). (5.55)
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as n tends to +∞. Now we can repeat the argument of the step -ii- of the
case α = 0 by using (5.55) instead of (5.17) to pass to the limit in (5.8) and
we still have

µ(θn)|Dun|2 → µ(θ)|Du|2 in L1(Q),

as n tends to +∞. We conclude that by Lemma 4.1 and Lemma 4.2

θ̂εn → θ̂ε strongly in Lr(0, T ;Lq(Ω)),

as n tends to ∞, where for a fixed ε > 0, θ̂ε is the unique renormalized
solution of (3.5)–(3.7) (with bε in place of b). Then ψε3 is a continuous
mapping.

-iii- There exists a ball B of Lr(0, T ;Lq(Ω)) such that ψε3(B) ⊂ B.
We show that there exists a positive real number η > 0 and a positive real
number R(η) > 0, which do not depend upon ε, such that if

a2 + ‖u0‖2(L2(Ω))2 + ‖b(θ0)‖L1(Ω) ≤ η, (5.56)

then
ψε3(BL2α(Q)(0, R(η))) ⊂ BL2α(Q)(0, R(η)).

We proceed as in the step -iii- of the case 1 ≤ 2α ≤ 2 upon replacing
‖F (θ)‖(L2(Q))2 by ‖F (θ)‖L2(0,T ;(H−1(Ω))2) and we obtain∫ T

0

∫
Ω
|Du|2 dx dt ≤ C

(
‖F (θ)‖2L2(0,T ;(H−1(Ω))2) + ‖u0‖2(L2(Ω))2

)
.

Appealing now to Lemma 4.2 and to (5.52) gives

‖θ̂ε‖Lr(0,T ;Lq(Ω)) ≤ C
[
a2+M2‖θ‖2αLr(0,T ;Lq(Ω))+‖u0‖2(L2(Ω))2+‖bε(θ0)‖L1(Ω)

]
,

with C is a constant independent of ε, ‖θ‖Lr(0,T ;Lq(Ω)), u0, M and θ0.
Then the proof of the result is identical to that of the step -iii- of the case
1 ≤ 2α ≤ 2.

Schauder’s fixed-point theorem and the definition of ψε3, permit us to
conclude that under the condition (5.56), there exists a weak-renormalized
solution (θε, uε) of the regularized problem (5.46)–(5.50) which satisfies

‖θε‖Lr(0,T ;Lq(Ω)) ≤ R(η),

for ε small enough. With (5.52), we obtain

F (θε) is bounded in L2(0, T ; (H−1(Ω))2),
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so that
µ(θε)|Duε|2 is bounded in L1(Q).

As a consequence of Lemma 4.1 and Lemma 4.2 we deduce that for a sub-
sequence still indexed by ε

θε −→ θ almost everywhere in Q,

bε(θε) −→ b(θ) almost everywhere in Q,

TK(θε) ⇀ TK(θ) in L2(0, T ;H1
0 (Ω)),

‖θε‖Lr1 (0,T ;Lq1 (Ω)) ≤ C(η),
where θ belongs to Lr1(0, T ;Lq1(Ω)) for any (q1, r1) such that q1 > 1 and
1 ≤ r1 <

q1
q1−1 .

Proceeding as in the proof of the compactness of ψε3 leads to

θε → θ in L2α(0, T ;Lq(Ω)),

F (θε)→ F (θ) in L2(0, T ; (H−1(Ω))2),
and

µ(θε)|Duε|2 → µ(θ)|Du|2 in L1(Q),
as ε tends to 0. Using again Lemma 4.1 permits us to conclude that: θ
is a renormalized solution of (3.5)–(3.7). As a consequence, there exists a
weak-renormalized solution (θ, u) of the problem (2.7)–(2.11).

�

6. Existence of a solution for N=3

In this section, we assume that F is a continuous and bounded function
from R into R3.

Theorem 6.1. Assume that (2.1), (2.2), (2.3) and (2.6) hold true. Assume
that F is a continuous and bounded function from R into R3, and u0 ∈
(H1

0 (Ω))3 such that div u0 = 0 and u0 · n = 0 on ∂Ω. There exists a real
positive number η such that if ‖u0‖(H1

0 (Ω))3 + ‖F‖(L∞(R))3 ≤ η, then there
exists at least a weak-renormalized solution of the system (2.7)–(2.11) for
N = 3 (in the sense of Definition 2.1).

Proof of Theorem 6.1. Since the proof relies on similar techniques to the
ones developed in the previous sections, we just point out how to modify the
arguments.
In a first step, we assume that b′ is locally Lipschitz continuous. The fixed-
point space is L = L1(Q). For a fixed θ in L1(Q), it is known that there exists
η > 0 such that if ‖u0‖(H1

0 (Ω))3 + ‖F‖(L∞(R))3 ≤ η, then the Navier-Stokes
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equations (2.7)–(2.11) admit a unique solution u ∈ L∞(0, T ; (H1
0 (Ω))3) ∩

L2(0, T ; (H2(Ω))3) (see Theorem 3.11 of [26]). The unique renormalized
solution θ̂ of (3.5)–(3.7) indeed belongs to L1(Q) (see Lemma 4.2).
We denote by ψ4 the mapping defined by:

ψ4 : L1(Q) −→ L1(Q)

θ −→ θ̂ = ψ4(θ)

By the same arguments used in the preceding sections, particularly in the
case where α = 0, we know that ψ4 satisfies the conditions of the Schauder’s
fixed-point theorem, which implies the existence of a weak-renormalized so-
lution (θ, u) of the system (2.7)–(2.11) when b′ is locally Lipschitz.
In a second step, we regularize b by bε as in the previous sections. We recall
that for a fixed ε > 0 small enough, bε satisfies the assumptions (2.1), (2.2)
and b′ε is locally Lipschitz.
We consider the following approximate problem:

∂uε

∂t
+ (uε · ∇)uε − 2 div (µ(θε)Duε) = F (θε) in (H1

σ)′(Ω), (6.1)

for almost every t ∈ (0, T ),
∂bε(θε)
∂t

+ uε · ∇bε(θε)−∆θε = 2µ(θε)|Duε|2 in Q, (6.2)

div uε = 0 in Q, (6.3)
uε = 0 and θε = 0 on ΣT , (6.4)

uε(t = 0) = u0 and b(θε)(t = 0) = bε(θ0) in Ω. (6.5)

Since ‖u0‖(H1
0 (Ω))3 + ‖F‖(L∞(R))3 ≤ η and according to the result of first

step, we know that for a fixed ε > 0 (small enough), there exists a weak-
renormalized solution (θε, uε) of problem (6.1)–(6.5). Moreover the following
estimates hold true uniformly with respect to ε (see again Theorem 3.11 of
[26]):

uε is bounded in L2(0, T ;H2(Ω)),

∂uε

∂t
is bounded in L2(0, T ; (H1

σ) ′(Ω)).

Thanks to an Aubin’s type lemma (see e.g [24]), we may, then, extract a
subsequence such that:

uε → u strongly in L2(0, T ;H1
σ(Ω)), (6.6)
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as ε tends to 0, where u is a function which belongs to L∞(0, T ; (H1
0 (Ω))3)∩

L2(0, T ; (H2(Ω))3). It implies that:

µ(θε)|Duε|2 is bounded in L1(Q).

Then using Lemma 4.1, there exists a subsequence still indexed by ε such
that:

θε −→ θ almost everywhere in Q, (6.7)

TK(θε) ⇀ TK(θ) in L2(0, T ;H1
0 (Ω)),

as ε tends to 0, where θ is a measurable function. In view of (6.6) and (6.7),
we deduce that

µ(θε)|Duε|2 → µ(θ)|Du|2 in L1(Q),

as ε tends to 0. Thanks again to Lemma 4.1, this last result allows to
conclude that θ is a renormalized solution of (3.5)–(3.7). As a consequence,
there exists a weak-renormalized solution (θ, u) of the problem (2.7)–(2.11).

�
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2. D. Blanchard and O. Guibé, Existence of solution for a nonlinear system in thermo-
viscoelasticity, Adv. Differential Equations, 5 (2000), 1221–1252.

3. D. Blanchard and F. Murat, Renormalized solution for nonlinear parabolic problems
with L1 data, existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997),
1137–1152.

4. D. Blanchard, F. Murat, and H. Redwane, Existence and uniqueness of a renormal-
ized solution for a fairly general class of nonlinear parabolic problems, J. Differential
Equations, 177 (2001), 331–374.

5. D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear para-
bolic evolution problems, J. Math. Pures Appl., 77 (1998), 117–151.
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