Licence de Mathématiques. Topologie 1993-1994

Devoir 2

Le contrôle sur le devoir 2 portera également sur les exercices des fiches 5 et 6 de T.D. Aucun document ne sera autorisé.

Exercice 1:

Soit E un espace métrique compact. Soit f une application de E dans E vérifiant :

$$\forall x, y \in E \quad d(f(x), f(y)) \ge d(x, y)$$

a) Soit $x, y \in E$. Montrer que :

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N}^* \ \text{tel que} \ \begin{cases} d\big(x, f^k(x)\big) \leq \varepsilon \\ d\big(y, f^k(y)\big) \leq \varepsilon \end{cases}$$

- b) En déduire que f(E) est dense dans E et que $\forall x, y \in E$ d(f(x), f(y)) = d(x, y).
- c) Montrer que f est une isométrie de E sur E.

Exercice 2:

Soit E un espace métrique compact. Soit f une application de E dans E vérifiant :

$$\forall x, y \in E \quad x \neq y \implies d(f(x), f(y)) < d(x, y)$$

- a) Montrer que f admet un unique point fixe $\Big($ on pourra considérer l'application $x \longrightarrow d\big(f(x),x\big)\Big)$.
- b) Donner un exemple de compact de $\mathbb R$ et d'une application de ce compact dans lui-même sans point fixe.

Exercice 3:

Soit E un espace métrique non compact. Montrer qu'il existe des applications de E dans \mathbb{R} continues mais non bornées.

Exercice 4:

Soit E un espace localement compact et $(\Omega_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses dans E.

- a) Montrer que si O_0 est un ouvert non vide, on peut construire une suite $(O_n)_{n\in\mathbb{N}}$ d'ouverts non vides relativement compacts telle que $\forall n\in\mathbb{N} \ \overline{O_{n+1}}\subset O_n\cap\Omega_n$.
- b) Montrer que $\bigcap_{n\in\mathbb{N}} \overline{O_n} \neq \emptyset$. En déduire que $\bigcap_{n\in\mathbb{N}} \Omega_n$ est dense dans E.
- c) Montrer que si E est réunion dénombrable de fermés, alors un de ces fermés est d'intérieur non vide.